21 research outputs found

    A Stochastic Geometry Framework for LOS/NLOS Propagation in Dense Small Cell Networks

    Full text link
    The need to carry out analytical studies of wireless systems often motivates the usage of simplified models which, despite their tractability, can easily lead to an overestimation of the achievable performance. In the case of dense small cells networks, the standard single slope path-loss model has been shown to provide interesting, but supposedly too optimistic, properties such as the invariance of the outage/coverage probability and of the spectral efficiency to the base station density. This paper seeks to explore the performance of dense small cells networks when a more accurate path-loss model is taken into account. We first propose a stochastic geometry based framework for small cell networks where the signal propagation accounts for both the Line-of-Sight (LOS) and Non-Line-Of-Sight (NLOS) components, such as the model provided by the 3GPP for evaluation of pico-cells in Heterogeneous Networks. We then study the performance of these networks and we show the dependency of some metrics such as the outage/coverage probability, the spectral efficiency and Area Spectral Efficiency (ASE) on the base station density and on the LOS likelihood of the propagation environment. Specifically, we show that, with LOS/NLOS propagation, dense networks still achieve large ASE gain but, at the same time, suffer from high outage probability.Comment: Typo corrected in eq. (3); Typo corrected in legend of Fig. 1-2; Typos corrected and definitions of some variables added in Section III.E; Final result unchanged; Paper accepted to IEEE ICC 201

    Fair and Regulated Spectrum Allocation in Licensed Shared Access Networks

    Get PDF
    We propose a novel Licensed Shared Access (LSA) spectrum allocation framework in this paper. The spectrum is made available to the licensee mobile network operators (MNOs) at specific time instants, in a specific service area, and for a specific time period. We propose a spectrum allocation algorithm which aims at providing resources to the MNOs in such a way that they can utilize them to serve their users and the resource allocation is fair at the same time. We also introduce a penalty mechanism whose output is a reduced spectrum allocation for the MNOs which violate the LSA spectrum use regulations. Our proposed algorithms are evaluated numerically and our results show that we can both guarantee fairness in spectrum allocation and penalize the MNOs that misbehave in regards to the LSA spectrum usage limitations imposed by the incumbent

    Unlocking the deployment of spectrum sharing with a policy enforcement framework

    Get PDF
    Spectrum sharing has been proposed as a promising way to increase the efficiency of spectrum usage by allowing incumbent operators (IOs) to share their allocated radio resources with licensee operators (LOs), under a set of agreed rules. The goal is to maximize a common utility, such as the sum rate throughput, while maintaining the level of service required by the IOs. However, this is only guaranteed under the assumption that all “players”respect the agreed sharing rules. In this paper, we propose a comprehensive framework for licensed shared access (LSA) networks that discourages LO misbehavior. Our framework is built around three core functions: misbehavior detection via the employment of a dedicated sensing network; a penalization function; and, a behavior-driven resource allocation. To the best of our knowledge, this is the first time that these components are combined for the monitoring/policing of the spectrum under the LSA framework. Moreover, a novel simulator for LSA is provided as an open access tool, serving the purpose of testing and validating our proposed techniques via a set of extensive system-level simulations in the context of mobile network operators, where IOs and several competing LOs are considered. The results demonstrate that violation of the agreed sharing rules can lead to a great loss of resources for the misbehaving LOs, the amount of which is controlled by the system. Finally, we promote that including a policy enforcement function as part of the spectrum sharing system can be beneficial for the LSA system, since it can guarantee compliance with the spectrum sharing rules and limit the short-term benefits arising from misbehavior
    corecore